Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 70(10): 5401-5416, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32886599

RESUMO

Aspergillus sections Usti and Cavernicolarum are accommodated in the subgenus Nidulantes. In the present study, a polyphasic approach using morphology and multi-gene phylogeny was applied to investigate the taxonomy of these two sections. Based on the phylogenetic analysis, Aspergillus section Usti includes 25 species, which can be assigned to four series: Calidousti, Deflecti, Monodiorum and Usti. Aspergillus sigarelli is newly described in this section and this species was isolated from a cigarette from PR China and belongs to series Calidousti. It is clearly distinct from other members in this series based on ITS, BenA, CaM and RPB2 sequences. Aspergillus section Usti members like A. calidoustus and A. granulosus are important opportunistic pathogens, it is speculative that more pathogenetic species will be found by using polyphasic taxonomy approaches. Aspergillus section Cavernicolarum includes five species, the growth rates on agar media and size and ornamentation of conidia are important characters for differentiating species in section Cavernicolarum.


Assuntos
Aspergillus/classificação , Filogenia , China , Análise de Sequência de DNA , Esporos Fúngicos
2.
MycoKeys ; 68: 75-113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733145

RESUMO

Talaromyces is a monophyletic genus containing seven sections. The number of species in Talaromyces grows rapidly due to reliable and complete sequence data contributed from all over the world. In this study agricultural soil samples from Fujiang, Guangdong, Jiangxi, Shandong, Tibet and Zhejiang provinces of China were collected and analyzed for fungal diversity. Based on a polyphasic approach including phylogenetic analysis of partial ITS, BenA, CaM and RPB2 gene sequences, macro- and micro-morphological analyses, six of them could not be assigned to any described species, and one cannot be assigned to any known sections. Morphological characters as well as their phylogenetic relationship with other Talaromyces species are presented for these putative new species. Penicillium resedanum is combined in Talaromyces section Subinflati as T. resedanus.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31451501

RESUMO

The past decade has seen an increase in aspergillosis in humans and animals due to Aspergillus viridinutans species complex members. Azole resistance is common to these infections, carrying a poor prognosis. cyp51A gene mutations are the main cause of acquired azole resistance in Aspergillus fumigatus This study aimed to determine if the azole-resistant phenotype in A. viridinutans complex members is associated with cyp51A mutations or extrolite profiles. The cyp51A gene of clinical and environmental isolates was amplified using novel primers, antifungal susceptibility was tested using the Clinical and Laboratory Standards Institute methodology, and extrolite profiling was performed using agar plug extraction. Very high azole MICs were detected in 84% of the isolates (31/37). The MICs of the newer antifungals luliconazole and olorofim (F901318) were low for all isolates. cyp51A sequences revealed 113 nonsynonymous mutations compared to the sequence of wild-type A. fumigatus M172A/V and D255G, previously associated with A. fumigatus azole resistance, were common among all isolates but were not correlated with azole MICs. Two environmental isolates with nonsusceptibility to itraconazole and high MICs of voriconazole and isavuconazole harbored G138C, previously associated with azole-resistant A. fumigatus Some novel mutations were identified only among isolates with high azole MICs. However, cyp51A homology modeling did not cause a significant protein structure change for these mutations. There was no correlation between extrolite patterns and susceptibility. For A. viridinutans complex isolates, cyp51A mutations and the extrolites that they produced were not major causes of antifungal resistance. Luliconazole and olorofim show promise for treating azole-resistant infections caused by these cryptic species.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Mutação/genética , Acetamidas/farmacologia , Animais , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Humanos , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Nitrilas/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Triazóis/farmacologia , Voriconazol/farmacologia
4.
Food Microbiol ; 81: 51-62, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30910088

RESUMO

Fungal spoilage of products manufactured by the food and beverage industry imposes significant annual global revenue losses. Mould spoilage can also be a food safety issue due to the production of mycotoxins by these moulds. To prevent mould spoilage, it is essential that the associated mycobiota be adequately isolated and accurately identified. The main fungal groups associated with spoilage are the xerophilic, heat-resistant, preservative-resistant, anaerobic and psychrophilic fungi. To assess mould spoilage, the appropriate methodology and media must be used. While classic mycological detection methods can detect a broad range of fungi using well validated protocols, they are time consuming and results can take days or even weeks. New molecular detection methods are faster but require good DNA isolation techniques, expensive equipment and may detect viable and non-viable fungi that probably will not spoil a specific product. Although there is no complete and easy method for the detection of fungi in food it is important to be aware of the limitation of the methodology. More research is needed on the development of methods of detection and identification that are both faster and highly sensitive.


Assuntos
Bebidas/microbiologia , Contaminação de Alimentos , Microbiologia de Alimentos , Fungos/isolamento & purificação , Fungos/metabolismo , Técnicas de Tipagem Micológica/métodos , DNA Fúngico/isolamento & purificação , Farmacorresistência Fúngica , Contaminação de Alimentos/prevenção & controle , Inocuidade dos Alimentos , Fungos/classificação , Fungos/genética , Temperatura Alta , Tipagem Molecular/métodos , Micotoxinas , Análise de Sequência de DNA/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Termotolerância
5.
Microbiologyopen ; 8(6): e00764, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30515994

RESUMO

Dark homogenous fungal-based layers called biofinishes and vegetable oils are key ingredients of an innovative wood protecting system. The aim of this study was to determine which of the vegetable oils that have been used to generate biofinishes on wood will provide carbon and energy for the biofinish-inhabiting fungus Aureobasidium melanogenum, and to determine the effect of the oil type and the amount of oil on the cell yield. Aureobasidium melanogenum was cultivated in shake flasks with different types and amounts of carbon-based nutrients. Oil-related total cell and colony-forming unit growth were demonstrated in suspensions with initially 1% raw linseed, stand linseed, and olive oil. Oil-related cell growth was also demonstrated with raw linseed oil, using an initial amount of 0.02% and an oil addition during cultivation. Nile red staining showed the accumulation of fatty acids inside cells grown in the presence of oil. In conclusion, each tested vegetable oil was used as carbon and energy source by A. melanogenum. The results indicated that stand linseed oil provides less carbon and energy than olive and raw linseed oil. This research is a fundamental step in unraveling the effects of vegetable oils on biofinish formation.


Assuntos
Ascomicetos/metabolismo , Carbono/metabolismo , Óleos de Plantas/metabolismo , Ascomicetos/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Meios de Cultura/metabolismo , Ácidos Graxos/metabolismo
6.
Antonie Van Leeuwenhoek ; 111(10): 1883-1912, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29654567

RESUMO

Penicillium and Talaromyces species have a worldwide distribution and are isolated from various materials and hosts, including insects and their substrates. The aim of this study was to characterize the Penicillium and Talaromyces species obtained during a survey of honey, pollen and the inside of nests of Melipona scutellaris. A total of 100 isolates were obtained during the survey and 82% of those strains belonged to Penicillium and 18% to Talaromyces. Identification of these isolates was performed based on phenotypic characters and ß-tubulin and ITS sequencing. Twenty-one species were identified in Penicillium and six in Talaromyces, including seven new species. These new species were studied in detail using a polyphasic approach combining phenotypic, molecular and extrolite data. The four new Penicillium species belong to sections Sclerotiora (Penicillium fernandesiae sp. nov., Penicillium mellis sp. nov., Penicillium meliponae sp. nov.) and Gracilenta (Penicillium apimei sp. nov.) and the three new Talaromyces species to sections Helici (Talaromyces pigmentosus sp. nov.), Talaromyces (Talaromyces mycothecae sp. nov.) and Trachyspermi (Talaromyces brasiliensis sp. nov.). The invalidly described species Penicillium echinulonalgiovense sp. nov. was also isolated during the survey and this species is validated here.


Assuntos
Abelhas/microbiologia , Mel/microbiologia , Penicillium/classificação , Pólen/microbiologia , Talaromyces/classificação , Animais , Microbiologia Ambiental , Genes Fúngicos , Tipagem Molecular , Penicillium/genética , Penicillium/isolamento & purificação , Filogenia , Talaromyces/genética , Talaromyces/isolamento & purificação
7.
Artigo em Inglês | MEDLINE | ID: mdl-28955471

RESUMO

BACKGROUND: Biofinished wood is considered to be a decorative and protective material for outdoor constructions, showing advantages compared to traditional treated wood in terms of sustainability and self-repair. Natural dark wood staining fungi are essential to biofinish formation on wood. Although all sorts of outdoor situated timber are subjected to fungal staining, the homogenous dark staining called biofinish has only been detected on specific vegetable oil-treated substrates. Revealing the fungal composition of various natural biofinishes on wood is a first step to understand and control biofinish formation for industrial application. RESULTS: A culture-based survey of fungi in natural biofinishes on oil-treated wood samples showed the common wood stain fungus Aureobasidium and the recently described genus Superstratomyces to be predominant constituents. A culture-independent approach, based on amplification of the internal transcribed spacer regions, cloning and Sanger sequencing, resulted in clone libraries of two types of biofinishes. Aureobasidium was present in both biofinish types, but was only predominant in biofinishes on pine sapwood treated with raw linseed oil. Most cloned sequences of the other biofinish type (pine sapwood treated with olive oil) could not be identified. In addition, a more in-depth overview of the fungal composition of biofinishes was obtained with Illumina amplicon sequencing that targeted the internal transcribed spacer region 1. All investigated samples, that varied in wood species, (oil) treatments and exposure times, contained Aureobasidium and this genus was predominant in the biofinishes on pine sapwood treated with raw linseed oil. Lapidomyces was the predominant genus in most of the other biofinishes and present in all other samples. Surprisingly, Superstratomyces, which was predominantly detected by the cultivation-based approach, could not be found with the Illumina sequencing approach, while Lapidomyces was not detected in the culture-based approach. CONCLUSIONS: Overall, the culture-based approach and two culture-independent methods that were used in this study revealed that natural biofinishes were composed of multiple fungal genera always containing the common wood staining mould Aureobasidium. Besides Aureobasidium, the use of other fungal genera for the production of biofinished wood has to be considered.

8.
PLoS One ; 12(8): e0181660, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28792943

RESUMO

Invasive fungal infections (IFI) due to species in Aspergillus section Fumigati (ASF), including the Aspergillus viridinutans species complex (AVSC), are increasingly reported in humans and cats. The risk of exposure to these medically important fungi in Australia is unknown. Air and soil was sampled from the domiciles of pet cats diagnosed with these IFI and from a nature reserve in Frankston, Victoria, where Aspergillus viridinutans sensu stricto was discovered in 1954. Of 104 ASF species isolated, 61% were A. fumigatus sensu stricto, 9% were AVSC (A. felis-clade and A. frankstonensis sp. nov.) and 30% were other species (30%). Seven pathogenic ASF species known to cause disease in humans and animals (A. felis-clade, A. fischeri, A. thermomutatus, A. lentulus, A. laciniosus A. fumisynnematus, A. hiratsukae) comprised 25% of isolates overall. AVSC species were only isolated from Frankston soil where they were abundant, suggesting a particular ecological niche. Phylogenetic, morphological and metabolomic analyses of these isolates identified a new species, A. frankstonensis that is phylogenetically distinct from other AVSC species, heterothallic and produces a unique array of extrolites, including the UV spectrum characterized compounds DOLD, RAIMO and CALBO. Shared morphological and physiological characteristics with other AVSC species include slow sporulation, optimal growth at 37°C, no growth at 50°C, and viriditoxin production. Overall, the risk of environmental exposure to pathogenic species in ASF in Australia appears to be high, but there was no evidence of direct environmental exposure to AVSC species in areas where humans and cats cohabitate.


Assuntos
Aspergilose/epidemiologia , Aspergillus/classificação , Aspergillus/isolamento & purificação , Monitoramento Ambiental/métodos , Infecções Fúngicas Invasivas/epidemiologia , Animais , Antifúngicos/farmacologia , Aspergilose/microbiologia , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Austrália/epidemiologia , Sequência de Bases , Gatos , DNA Fúngico/genética , Exposição Ambiental , Humanos , Infecções Fúngicas Invasivas/microbiologia , Testes de Sensibilidade Microbiana , Naftóis/metabolismo , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo
9.
Environ Monit Assess ; 189(7): 362, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28667414

RESUMO

Pathogenic and/or opportunistic fungal species are major causes of nosocomial infections, especially in controlled environments where immunocompromised patients are hospitalized. Indoor fungal contamination in hospital air is associated with a wide range of adverse health effects. Regular determination of fungal spore counts in controlled hospital environments may help reduce the risk of fungal infections. Because infants have inchoate immune systems, they are given immunocompromised patient status. The aim of the present study was to evaluate culturable airborne fungi in the air of hospital newborn units in the Thrace, Marmara, Aegean, and Central Anatolia regions of Turkey. A total of 108 air samples were collected seasonally from newborn units in July 2012, October 2012, January 2013, and April 2013 by using an air sampler and dichloran 18% glycerol agar (DG18) as isolation media. We obtained 2593 fungal colonies comprising 370 fungal isolates representing 109 species of 28 genera, which were identified through multi-loci gene sequencing. Penicillium, Aspergillus, Cladosporium, Talaromyces, and Alternaria were the most abundant genera identified (35.14, 25.40, 17.57, 2.70, and 6.22% of the total, respectively).


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Berçários Hospitalares/estatística & dados numéricos , Esporos Fúngicos , Compostos de Anilina , Animais , Infecção Hospitalar , Fungos , Hospitais , Humanos , Lactente , Recém-Nascido , Penicillium , Turquia
10.
IMA Fungus ; 7(1): 75-117, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27433442

RESUMO

A survey of the fynbos biome in South Africa resulted in the isolation of 61 Penicillium species from Protea repens infructescences, air, and soil samples. Fourteen of these belong to Penicillium sect. Exilicaulis and therefore we considered it an opportunity to re-evaluate the taxonomy of the section. Phylogenetic comparisons of the ITS, ß-tubulin, calmodulin and RPB2 gene regions of the 76 section Exilicaulis species, revealed 52 distinct species, including nine new species from fynbos. Morphological comparisons confirmed the novelty for most of these, however, new species closely related to P. rubefaciens did not show significant or consistent morphological differences and we thus placed a bias on phylogenetic data applying the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) concept. In this paper we describe the nine new species and update the accepted species list and resolve synonyms in the section. Importantly, we reveal that P. citreosulfuratum is the correct name for the clade previously considered to represent P. toxicarium fide Serra et al. (2008). The nine new species are: Penicillium atrolazulinum, P. consobrinum, P. cravenianum, P. hemitrachum, P. pagulum, P. repensicola, P. momoii, P. subturcoseum, and P. xanthomelinii spp. nov.

11.
Antonie Van Leeuwenhoek ; 109(5): 661-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26920754

RESUMO

The genus Aureobasidium, which is known as a wood staining mould, has been detected on oil treated woods in the specific stain formation called biofinish. This biofinish is used to develop a new protective, self-healing and decorative biotreatment for wood. In order to understand and control biofinish formation on oil treated wood, the occurrence of different Aureobasidium species on various wood surfaces was studied. Phenotypic variability within Aureobasidium strains presented limitations of morphological identification of Aureobasidium species. PCR amplification and Sanger sequencing of ITS and RPB2 were used to identify the culturable Aureobasidium species composition in mould stained wood surfaces with and without a biofinish. The analysed isolates showed that several Aureobasidium species were present and that Aureobasidium melanogenum was predominantly detected, regardless of the presence of a biofinish and the type of substrate. A. melanogenum was detected on wood samples exposed in the Netherlands, Cameroon, South Africa, Australia and Norway. ITS-specific PCR amplification, cloning and sequencing of DNA extracted from biofinish samples confirmed results of the culturing based method: A. melanogenum is predominant within the Aureobasidium population of biofinishes on pine sapwood treated with raw linseed oil and the outdoor placement in the Netherlands.


Assuntos
Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Madeira/microbiologia , Ascomicetos/citologia , Ascomicetos/genética , Biodiversidade , DNA Fúngico/genética , DNA Ribossômico/genética , Técnicas de Tipagem Micológica , Fenótipo , Filogenia , Pinus/microbiologia , Plantas/microbiologia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Madeira/química
12.
Mycologia ; 108(1): 70-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26577610

RESUMO

Talaromyces amestolkiae is a common cosmopolitan species that has been cultured from indoor house dust, sputum and lungs from cystic fibrosis patients, indoor air, wheat, soil, pineapple, sculptures and manure. It was described as an asexual Talaromyces species and was reported to produce black sclerotia. In this study we report on the induction of sexual reproductive structures in T. amestolkiae. The mating type of 18 T. amestolkiae strains was determined with MAT-specific primers. Subsequently opposite mating types were inoculated on oatmeal agar and malt-extract agar and incubated 6-20 wk at 25 and 30 C in darkness. After incubation single ascospore isolations were made and evidence of recombination in the offspring was examined by amplified fragment length polymorphism and pairwise homoplasy index test, which is implemented in Splitstree4. The offspring displayed clear evidence of recombination on a genetic level as shown in the variations observed between banding patterns in the amplified fragment length polymorphism. Also a net-like and reticulated NeighborNet was observed and the pairwise homoplasy index test for recombination supported the presence of recombination (P = 0.003372). The distribution of MAT1-1 and MAT1-2 genes in the progeny showed a close to 1:1 ratio. Talaromyces amestolkiae is only the second heterothallic Talaromyces species to produce ascomata and ascospores under laboratory conditions.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Talaromyces/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , Análise por Conglomerados , Dados de Sequência Molecular , Micélio , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos , Talaromyces/genética , Talaromyces/ultraestrutura
13.
PLoS One ; 10(12): e0145415, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26690349

RESUMO

Indoor fungi are a major cause of cosmetic and structural damage of buildings worldwide and prolonged exposure of these fungi poses a health risk. Aspergillus, Penicillium and Cladosporium species are the most predominant fungi in indoor environments. Cladosporium species predominate under ambient conditions. A total of 123 Cladosporium isolates originating from indoor air and indoor surfaces of archives, industrial factories, laboratories, and other buildings from four continents were identified by sequencing the internal transcribed spacer (ITS), and a part of the translation elongation factor 1α gene (TEF) and actin gene (ACT). Species from the Cladosporium sphaerospermum species complex were most predominant representing 44.7% of all isolates, while the Cladosporium cladosporioides and Cladosporium herbarum species complexes represented 33.3% and 22.0%, respectively. The contribution of the C. sphaerospermum species complex was 23.1% and 58.2% in the indoor air and isolates from indoor surfaces, respectively. Isolates from this species complex showed growth at lower water activity (≥ 0.82) when compared to species from the C. cladosporioides and C. herbarum species complexes (≥ 0.85). Together, these data indicate that xerotolerance provide the C. sphaerospermum species complex advantage in colonizing indoor surfaces. As a consequence, C. sphaerospermum are proposed to be the most predominant fungus at these locations under ambient conditions. Findings are discussed in relation to the specificity of allergy test, as the current species of Cladosporium used to develop these tests are not the predominant indoor species.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Cladosporium/genética , Cladosporium/crescimento & desenvolvimento , Cladosporium/isolamento & purificação , Países Baixos , Água
14.
Mycobiology ; 43(3): 218-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26539037

RESUMO

Aspergillus is an important fungal genus used for the fermentation of Asian foods; this genus is referred to as koji mold in Japan and China. A. oryzae, A. sojae, and A. tamari are used in the production of miso and shoyu in Japan, but a comprehensive taxonomic study of Aspergillus isolated from Meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea, has not been conducted. In this study, various Aspergillus species were isolated during a study of the mycobiota of Meju, and the aspergilli were identified based on phenotypic characteristics and sequencing of the ß-tubulin gene. Most strains of Aspergillus were found to belong to the following sections: Aspergillus (n = 220), Flavi (n = 213), and Nigri (n = 54). The most commonly identified species were A. oryzae (n = 183), A. pseudoglaucus (Eurotium repens) (n = 81), A. chevalieri (E. chevalieri) (n = 62), A. montevidensis (E. amstelodami) (n = 34), A. niger (n = 21), A. tamari (n = 15), A. ruber (E. rubrum) (n = 15), A. proliferans (n = 14), and A. luchuensis (n = 14); 25 species were identified from 533 Aspergillus strains. Aspergillus strains were mainly found during the high temperature fermentation period in the later steps of Meju fermentation.

15.
Environ Microbiol ; 17(8): 2922-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25753337

RESUMO

Pentachlorophenol (PCP) is globally dispersed and contamination of soil with this biocide adversely affects its functional biodiversity, particularly of fungi - key colonizers. Their functional role as a community is poorly understood, although a few pathways have been already elucidated in pure cultures. This constitutes here our main challenge - elucidate how fungi influence the pollutant mitigation processes in forest soils. Circumstantial evidence exists that cork oak forests in N. W. Tunisia - economically critical managed forests are likely to be contaminated with PCP, but the scientific evidence has previously been lacking. Our data illustrate significant forest contamination through the detection of undefined active sources of PCP. By solving the taxonomic diversity and the PCP-derived metabolomes of both the cultivable fungi and the fungal community, we demonstrate here that most strains (predominantly penicillia) participate in the pollutant biotic degradation. They form an array of degradation intermediates and by-products, including several hydroquinone, resorcinol and catechol derivatives, either chlorinated or not. The degradation pathway of the fungal community includes uncharacterized derivatives, e.g. tetrachloroguaiacol isomers. Our study highlights fungi key role in the mineralization and short lifetime of PCP in forest soils and provide novel tools to monitor its degradation in other fungi dominated food webs.


Assuntos
Florestas , Fungos/metabolismo , Pentaclorofenol/metabolismo , Quercus/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biodiversidade , Poluição Ambiental , Fungos/isolamento & purificação , Solo/química , Tunísia
16.
J Clin Microbiol ; 53(4): 1056-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25297326

RESUMO

Recent changes in the Fungal Code of Nomenclature and developments in molecular phylogeny are about to lead to dramatic changes in the naming of medically important molds and yeasts. In this article, we present a widely supported and simple proposal to prevent unnecessary nomenclatural instability.


Assuntos
Micoses/microbiologia , Fungos/classificação , Humanos , Infectologia , Micologia , Terminologia como Assunto
17.
Int J Food Microbiol ; 193: 91-8, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25462928

RESUMO

Fungi have an important role in the production of dry-cured meat products, especially during the seasoning period. In general, both industrially and handmade salami are quickly colonized by a composite mycobiota during seasoning, often with a strong predominance of Penicillium species. These species are involved in the improvement of the characteristics and taste, and in the prevention of the growth of pathogenic, toxigenic or spoilage fungi. During the survey of fungal species occurring on the salami surface and in the air of the seasoning and storage areas of a salami plant (Calabria, Italy), two Penicillium species were predominantly present. One species was identified as Penicillium nalgiovense, and the other was related to, but distinct from, Penicillium olsonii. Further molecular and biochemical analyses showed that this strain has high homology with the not yet described species named "Penicillium milanense" isolated in Denmark and Slovenia on cured meats. The taxonomic position of these strains in Penicillium was investigated using calmodulin, ß tubulin and ITS sequences, phenotypic characters and extrolite patterns, and resulted in the discovery of a new Penicillium species, described here as P. salamii. A literature search showed that this species occurs on (cured) meat products worldwide. In our study, P. salamii predominated the salami and capocollo surface in levels similar to the commonly known starter culture P. nalgiovense, irrespective of the room or age of seasoning. Preliminary inoculation trials with P. salamii showed that it was able to colonize salami during seasoning, indicating that this species could be used as a fungal starter for dry-cured meat.


Assuntos
Produtos da Carne/microbiologia , Penicillium/classificação , Penicillium/isolamento & purificação , DNA Fúngico/genética , Manipulação de Alimentos , Itália , Dados de Sequência Molecular , Penicillium/crescimento & desenvolvimento , Filogenia
18.
J Clin Microbiol ; 52(10): 3707-21, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100816

RESUMO

Aspergillus section Fumigati contains 12 clinically relevant species. Among these Aspergillus species, A. fumigatus is the most frequent agent of invasive aspergillosis, followed by A. lentulus and A. viridinutans. Genealogical concordance and mating experiments were performed to examine the relationship between phylogenetic distance and mating success in these three heterothallic species. Analyses of 19 isolates from section Fumigati revealed the presence of three previously unrecognized species within the broadly circumscribed species A. viridinutans. A single mating type was found in the new species Aspergillus pseudofelis and Aspergillus pseudoviridinutans, but in Aspergillus parafelis, both mating types were present. Reciprocal interspecific pairings of all species in the study showed that the only successful crosses occurred with the MAT1-2 isolates of both A. parafelis and A. pseudofelis. The MAT1-2 isolate of A. parafelis was fertile when paired with the MAT1-1 isolates of A. fumigatus, A. viridinutans, A. felis, A. pseudoviridinutans, and A. wyomingensis but was not fertile with the MAT1-1 isolate of A. lentulus. The MAT1-2 isolates of A. pseudofelis were fertile when paired with the MAT1-1 isolate of A. felis but not with any of the other species. The general infertility in the interspecies crossings suggests that genetically unrelated species are also biologically incompatible, with the MAT1-2 isolates of A. parafelis and A. pseudofelis being the exception. Our findings underscore the importance of genealogical concordance analysis for species circumscription, as well as for accurate species identification, since misidentification of morphologically similar pathogens with differences in innate drug resistance may be of grave consequences for disease management.


Assuntos
Aspergillus/crescimento & desenvolvimento , Aspergillus/genética , Cruzamentos Genéticos , Genes Fúngicos Tipo Acasalamento , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus/classificação , Aspergillus/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Modelos Animais de Doenças , Humanos , Lepidópteros , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Análise de Sequência de DNA , Virulência
19.
Mycologia ; 106(3): 537-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24871606

RESUMO

During a survey of the fynbos biome in the Western Cape of South Africa, 61 Penicillium species were isolated and nine belong to Penicillium section Citrina. Based on morphology and multigene phylogenies, section Citrina species were identified as P. cairnsense, P. citrinum, P. pancosmium, P. pasqualense, P. sanguifluum, P. sizovae, P. sumatrense and P. ubiquetum. One of the species displayed unique phenotypic characters and DNA sequences and is described here as P. sucrivorum. Multigene phylogenies consistently resolved the new species in a clade with P. aurantiacobrunneum, P. cairnsense, P. miczynksii, P. neomiczynskii and P. quebecense. However, ITS, ß-tubulin and calmodulin gene sequences are unique for P. sucrivorum and growth rates on various media, the ability to grow at 30 C, a positive Ehrlich reaction and the absence of sclerotia on all media examined, distinguish P. sucrivorum from all of its close relatives.


Assuntos
Biodiversidade , Penicillium/isolamento & purificação , Proteaceae/microbiologia , Ecossistema , Dados de Sequência Molecular , Penicillium/classificação , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Filogenia , Microbiologia do Solo , África do Sul , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação
20.
Arh Hig Rada Toksikol ; 65(2): 219-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24778343

RESUMO

Black Aspergilli (Aspergillus section Nigri) are widely distributed in various habitats. They act as food spoilage organisms, human pathogens, and mycotoxin producers and are frequently encountered in indoor environments. Black Aspergilli, specifically A. niger, A. welwitschiae, and A. carbonarius, produce different ochratoxins and fumonisins. Ochratoxins are known to induce renal disorders following inhalation, which necessitates the determination of potential mycotoxin-producing species in our environment. This paper aimed to compare the diversity and species distribution of black Aspergilli in the indoor environments of six different countries using morphological and molecular methods. A total of 178 black Aspergillus isolates were identified from six countries. In contrast with results from previous studies, A. niger was not the only black Aspergillus detected in indoor air. Species distribution differed among countries, although the distribution in European countries (Croatia, Hungary, the Netherlands, and Turkey) with a temperate climate was considerably similar. The highest species diversity was observed in indoor samples from Thailand, while the lowest was found in Algeria. Potentially ochratoxin- and fumonisin-producing fungi were detected in the indoor air of all six countries. Further studies need to clarify the effect of these fungi and their mycotoxins on human and animal health.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Poluição do Ar em Ambientes Fechados/análise , Aspergillus niger/isolamento & purificação , Biodiversidade , Argélia , Croácia , Hungria , Países Baixos , Tailândia , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA